alex_leshy (alex_leshy) wrote,
alex_leshy
alex_leshy

Category:

Малые и средние АЭС

В качестве моего предисловия: Мы лучше всех в мире научились делать большие реакторы, сейчас, судя по результатам, также качественно осваиваем малые. Таким макаром скоро и до атомных батареек дело реально может дойти. А если серьезно, то ниша малых и средних АЭС в мире действительно не толком никем не освоена. Это значит, что мы не только выходим на новый, весьма богатый, рынок, но еще и фактически сами же создаем его, а значит и столбим. По мне так отличная новость.




Малые и средние АЭС


Во время большой предновогодней пресс-конференции Владимир Путин, отвечая на вопрос журналиста из Калининграда, сказал о малых и средних АЭС как одном из вариантов решения гипотетической энергоблокады западного форпоста России. Остановимся на этом моменте немного подробнее, поскольку для многих из нас эти вот «малые и средние АЭС» – всего лишь набор приятных уху слов.

Прежде всего – что, собственно говоря, подразумевается под этим термином? Определение дает МАГАТЭ: по ее классификации к малым относятся реакторы, у которых электрическая мощность не превышает 300 МВт. Имеется для них и специальная аббревиатура – АСММ: атомные станции малой мощности. Из всех действующих в мире реакторов малых – всего 25 штук, из которых 18 работают в Индии, 4 – в России, 2 в Китае и 1 – в Пакистане.

Почему так мало? Эволюция атомных реакторов в течение последних десятилетий шла под знаменем борьбы за экономией от масштаба АЭС, потому они и «росли» в мощности. Наши, советско/российские реакторы – наглядный тому пример. ВВЭР-220 сменили ВВЭР-440, им на смену пришли ВВЭР-1000, в Нововоронеже этим летом заработал реактор ВВЭ-1200. Французы вот уже с десяток лет пытаются построить реактор и вовсе в 1 600 МВт – не исключено, что когда-то у них это получится. Однако реакторы большой мощности, не смотря на впечатляющее снижение себестоимости генерируемой ими электроэнергии, предъявляют большие и жесткие требования к энергетической системе, в составе которой они работают. Например, пропускная способность энергосистемы должна уметь принимать такие огромные порции энергии. На время остановки на профилактические и плановые ремонты, на время перезагрузки топлива в сети должны иметься «запасные» энергетические станции – потребитель не должен страдать, он должен вообще не замечать такие остановки. И, само собой, в сети должны иметься потребители, способные принять всю электроэнергию, вырабатываемую на АЭС. Мегаполисы, крупные производства или объекты инфраструктуры, а такая роскошь имеется далеко не в каждом государстве, тем более – в комплекте со всем прочим выше перечисленным.

Соответственно, АСММ имеют целый ряд преимуществ перед АЭС большой мощности. Прежде всего, раз уж мы живем в капитализме, мы обязаны думать о деньгах – о инвестициях и сроках их окупаемости. Меньше мощность – меньше физические размеры – меньше объемы строительства, быстрее срок ввода в эксплуатацию, и, следовательно, инвестиции, объем которых много меньше, чем при строительстве традиционных АЭС, окупятся быстрее. Или, говоря языком экономистов: АСММ снижают финансовые риски. Кроме того, АСММ не предъявляют такие высокие требования к энергосетям: и пропускная мощность столь огромная не нужна, и потребители могут не быть гигантами промышленности. В общем, АСММ – очень неплохой вариант для снабжения электроэнергией малонаселенных и изолированных регионов. Мало того: АСММ вполне способны обеспечивать небольшие населенные пункты еще и теплом, а, при комплектации соответствующим оборудованием – и пресной питьевой водой.


Билибинская АТЭЦ

В Советском Союзе и теперь в России имеется классический пример успешно эксплуатируемой АСММ. Это Билибинская АТЭЦ – атомная теплоэнергоцентраль, единственная в мире АЭС, расположенная в зоне вечной мерзлоты. Решение о ее строительстве было принято в 1965 году, в 1974-76 были приняты в эксплуатацию все ее четыре реактора ЭГП-6. Расшифровка аббревиатуры: Энергетический Гетерогенный Петлевой с 6 петлями циркуляции энергоносителя. В качестве замедлителя используется графит, по которому и «петляет» вода. Конструкция получилась надежной, но развития не получила – слишком много конструктивных сложностей для выработки 12 МВт. В начале 90-х на Билибинской АЭС было несколько весьма неприятных инцидентов: 2 утечки жидких радиоактивных веществ (3-й уровень по шкале INES), в 95-м было аварийное отключение АЭС из-за потери электроэнергии для собственных нужд (1-й уровень), в 98-м при перегрузке топлива на блоке №4 три сотрудника АЭС получили переоблучение. В общем, ЭГП-6 серию уже не пойдут, разработка конструкторского бюро НИКИЭТ (Научно-Исследовательский и Конструкторский Институт Энерготехники) с 2019 по 2021 год планово «уйдет на пенсию»: реакторы остановят и займутся дезактивацией площадки.


Первая плавучая атомная электростанция

Сделано это будет именно планово: в 2020 году к причалу Билибино встанет первая в мире действующая плавучая АТЭС (атомная теплоэлектростанция) «Академик Ломоносов». Несамоходное судно водоизмещением 21’500 тонн будет оснащено двумя малыми реакторами КЛТ-40С разработки ОКБМ им. Африкантова («Опытное Конструкторское Бюро Машиностроения). Каждый реактор вырабатывает 35,0 МВт электроэнергии и 150 МВт (73 Гкал/час) тепловой мощности, при этом уже имеется готовый проект оснащения ПАТЭС еще и установкой по опреснению морской воды мощностью до 100 кубометров в сутки. Еще одна особенность КЛТ-40С – то, что он способен ...

Полный текст статьи можно прочитать на сайте ГЕОЭНЕРГЕТИКА




Tags: Россия, атом, энергетика
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 1 comment